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SUMMARY

A method for simulating two-phase flows including surface tension is presented. The approach is based
upon smoothed particle hydrodynamics (SPH). The fully Lagrangian nature of SPH maintains sharp
fluid–fluid interfaces without employing high-order advection schemes or explicit interface reconstruc-
tion. Several possible implementations of surface tension force are suggested and compared. The
numerical stability of the method is investigated and optimal choices for numerical parameters are
identified. Comparisons with a grid-based volume of fluid method for two-dimensional flows are
excellent. The methods presented here apply to problems involving interfaces of arbitrary shape
undergoing fragmentation and coalescence within a two-phase system and readily extend to three-
dimensional problems. Boundary conditions at a solid surface, high viscosity and density ratios, and the
simulation of free-surface flows are not addressed. Copyright © 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Surface tension forces play an important role in many systems within both natural and
artificial environments. For example, applications in food processing, cosmetics, metal casting,
enamelling, fuel injection systems, and sub-surface contaminant transport all involve effects
resulting from the tension present at liquid–liquid interfaces. Many techniques have been
developed to simulate multiphase flows with surface tension. Some of these use simplifying
assumptions to increase computational efficiency, making it difficult to include extra physical
or chemical effects or complicated boundary conditions. In addition, it can be difficult to
extend some methods to three-dimensional problems. Smoothed particle hydrodynamics (SPH)
is a computational technique originally developed to model astrophysical problems [1,2],
however, it has since been extended to model a wide variety of problems in computational
physics [3–5]. SPH is a fully Lagrangian technique where fluid interfaces are advected with
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very little numerical diffusion. The SPH formalism readily accommodates extra physical and
chemical effects and highly irregular, mobile or even deformable boundaries [6,7]. This
flexibility readily carries over into three-dimensional problems. However, SPH can often be
more computationally expensive than competing methods for idealized problems. The exten-
sion of SPH to model low Reynolds number incompressible flows has only recently been
achieved [7–9]. Some theoretical work has been done towards incorporating surface tension
effects into SPH [10,11], however, this work is one of the first to present successful simulations.
In this work we simulate surface tension acting at an interface between two fluids of the same
density and viscosity. The methods presented can be readily applied to problems involving
fluids of similar density and viscosity. The extension of the method to higher density and
viscosity ratios (e.g. at an air–water interface) is not considered.

2. INTERFACE TRACKING TECHNIQUES

A flexible fluid dynamics technique that accounts for surface tension must be able to handle
arbitrarily shaped interfaces between immiscible fluids. Many techniques have been developed
to model fluid–fluid interfaces [12–19] (see Scardovelli and Zaleski [20] for a recent review),
however, few are able to simulate general geometries. The more restricted methods model the
behaviour of isolated globules and cannot follow coalescence or fragmentation. In the case of
immiscible fluids, each corresponding to a different ‘colour’, c, interface tracking can be
achieved by simulating the advection of the colour function

(c
(t

+v · 9c=0 (1)

Many other types of discontinuities, such as shocks, involve an underlying mechanism that
serves to limit numerical diffusion. The techniques developed to simulate advection of contact
discontinuities involve special features, which seek to maintain sharp interfaces. Rider and
Kothe [17] and Rudman [19] review some of these approaches.

High-order advection techniques, typically developed for compressible flows, track disconti-
nuities with high accuracy and very little broadening (e.g. flux corrected transport (FCT) [19]
and the piecewise parabolic method (PPM) [21]). Such methods can be used to advect the
colour function through the computational domain and thus track the material interface
[17,19]. Despite the relatively low numerical diffusion present in such schemes, interfaces are
smoothed out over long periods and flow features can be lost [17].

Level set methods have been successfully applied to problems in geometry, image processing,
materials science, and fluid flow [22]. Typically in fluid problems, the interface is defined to be
the zero level set of a distance function (f) from the interface [22,23]. The distance function
itself is advected using low diffusion advection schemes and the colour function is then defined
in terms of the value of the distance function. This approach ensures very sharp interfaces,
however, exact conservation of mass is not guaranteed.

Some techniques geometrically reconstruct the interface at each time step to maintain sharp
interfaces. For example, the simplified line interface calculation (SLIC) method [24] uses a
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straightforward algorithm to guarantee sharp interfaces. However, the reconstruction of the
fluid–fluid interface results in artificial ejection of fluid globules. The volume of fluid (VOF)
method [25], and the method of Youngs [26] use more sophisticated reconstruction algorithms
to ensure sharp interfaces. The reconstruction process can cause small globules of fluid to
prematurely pinch off in the presence of strong vorticity or when flow features approach the
grid size [17]. Nevertheless, these methods provide a robust approach to maintaining sharp
interfaces using an Eulerian mesh.

The colour function may be evolved in a Lagrangian fashion by assigning fluid characteris-
tics to ‘particles’ or ‘markers’, which are then advected through the computational domain. In
general, this may be achieved using particles on the interface alone (surface-marker methods)
or by employing particles which fill the entire computational domain (volume-marker meth-
ods). Surface-markers have been used extensively to track the location of interfaces with high
accuracy [27–29]. Volume-marker methods use markers throughout the computational domain
to track different phases. This approach may be exploited by fully Lagrangian techniques (such
as SPH in this work) or by methods that employ both a grid and particles [30]. These methods
maintain interfaces of constant width, proportional to the numerical resolution employed.
While volume particle methods (such as SPH) can provide excellent interface tracking
capabilities [17,30], they are typically more computationally expensive for a given resolution.
Furthermore, the motion of the particles may lead to the formation of features smaller than
the resolution of the method. For example, very thin filaments of fluid may form which may
only be spanned by one or two particles, at which point calculations of pressure gradients and
surface tension will become inaccurate. Nevertheless, the SPH formalism is versatile and can
be readily extended to include extra physical and chemical effects. In addition, SPH has been
shown to readily model complicated and dynamic boundaries [6,7]. The presence of solid
boundaries of arbitrary shape can hinder the implementation of other techniques. Further-
more, many front-tracking techniques become excessively complicated or break down com-
pletely when more than two fluid phases are considered. With SPH, each extra phase is
modelled simply by introducing an extra ‘species’ of particle.

3. THE CONTINUUM SURFACE FORCE METHOD

The continuum surface force (CSF) method [31] permits numerical simulation of surface
tension without placing restrictions upon the flow geometry. It has been applied successfully to
many problems, including low gravity flows [31,32] and liquid–liquid jets [33]. The CSF
approach models processes localized to a fluid interface by applying them to fluid elements in
the transition region of the interface. Interfacial phenomena, such as surface tension and phase
change, are translated into volume processes having a net effect that emulates the desired
physics. This approach can be regarded as an immersed interface method [34].

In the CSF model, surface tension is translated into a force per unit volume, Fs, by

Fs= fsds (2)
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where ds is a normalized function (the surface delta function), which peaks at the interface and
fs is the force per unit area given by

fs=sk n̂+9ss (3)

where s is the surface tension coefficient, n̂ is the unit normal to the interface, k is the
curvature of the interface and 9s is the surface gradient. The second term in (3) acts
tangentially to the interface, forcing fluid from regions of low surface tension to higher surface
tension. In this work, surface tension is assumed constant throughout the fluid and the surface
gradient term is neglected. The first term in (3) is a force acting normal to the interface
corresponding to the net surface tension force due to the local curvature. This force acts to
smooth regions of high curvature, in an attempt to reduce the total surface area (and hence
surface energy).

The normal in (3) can be obtained using

n=
9c
[c ]

(4)

where c is the colour function identifying each fluid in the problem and [c ] is the jump in c
across the interface. The curvature can be calculated using [35]

k= −9 · n̂ (5)

There are many possible choices for ds, however, it should be normalized such that its integral
through the boundary is one. This is necessary for the correct physics of the interface to be
recovered as the resolution is increased. The function should also be non-zero only in those
fluid elements that correspond to the transition regions in the numerical method. The surface
delta function employed in this work is [31]

ds= �n� (6)

4. THE SPH EQUATIONS

Using SPH, the fluid is represented by particles, typically of fixed mass, which follow the fluid
motion, advect contact discontinuities, preserve Galilean invariance, and reduce computational
diffusion of various properties including momentum. The equations governing the evolution of
the fluid become expressions for interparticle forces and fluxes when written in SPH form.
Using the standard approach to SPH [3,4], the particles (which may also be regarded as
interpolation points) move with the local fluid velocity. Each particle carries mass m, velocity
v, and other fluid quantities specific to a given problem. The equations governing the evolution
of fluid quantities are expressed as summation interpolants using a kernel function W with
smoothing length h. For example, the density at particle a, ra, may be evaluated using
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ra=%
b

mbWab (7)

where Wab denotes

Wab=W(rab, h) (8)

and

rab=ra−rb (9)

where ra denotes the position of particle a. The kernel typically takes the form

W(rab, h)=
1

hN
f
��rab �

h
�

(10)

where N is the number of dimensions and the function f is typically either a Gaussian or a
spline approximating a Gaussian [36]. Typically, the smoothing length h is taken to be 1–1.5
times the average particle separation.

Other expressions for quantities at the particles are obtained by summation involving the
kernel or its derivatives. For example, the SPH expression for the pressure gradient term used
in this work is

−
�1

r
9p

�
a

= −%
b

mb
�pa+pb

rarb

�
9aWab (11)

where pa is the pressure at particle a and 9a denotes the gradient with respect to the
co-ordinates of particle a. For a kernel of the form in (10), this pressure gradient formulation
conserves momentum exactly, since forces acting between individual particles are
antisymmetric.

Most grid-based techniques treat the flow of water as incompressible since the speed of
sound in water is usually large compared with bulk fluid motions (i.e. a very low Mach
number). Using SPH, pressure is an explicit function of local fluid density and it is most
natural to use a quasi-incompressible equation of state [6]. Since the actual equation of state
for water would require a prohibitively small time step for stability (by the Courant–
Friedrich–Lewy (CFL) condition [37]), an artificial state equation is used. This work uses

p=c s
2(ra−r0) (12)

where r0 is the reference density of the fluid and cs is the speed of sound. Subtracting the
reference density was found to lead to more accurate simulations. The most probable reason
for this is that subtracting the reference density removes a zeroth-order error term associated
with conservative forms of SPH pressure gradients [38]. The chosen sound speed is low enough
to be practical, yet high enough to restrict density fluctuations within the desired limits
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(typically about 1 per cent [6]). For example, Morris et al. [7] suggested that cs be comparable
with the largest of

c s
2�

V2

D
,

mV
rLD

,
aL
D

(13)

where D is the desired relative variation in density, and V, L and a are typical velocity, length
and body acceleration scales, and m is the dynamic viscosity.

Viscous forces were calculated using a formulation recently applied to low Reynolds number
flow [7]. The SPH momentum equation, may then be written [7]

dva

dt
= −%

b

mb

pa+pb

rarb

9aWab+%
b

mb(ma+mb)vab

rarb

� 1
rab

(Wab

(ra

�
+ (as)a (14)

where as denotes the surface tension force per unit mass.

5. CALCULATING INTERFACIAL CURVATURE WITH SPH

In order to obtain realistic estimates of surface tension using (3), the curvature k must be
calculated accurately. This requires the accurate estimation of the surface normals and their
divergence.

The simplest SPH expression for n is given by

na=%
b

mb

rb

cb
i 9aWab (15)

where cb
i is the colour index of particle b. This expression was used by Monaghan [11] to derive

an SPH surface tension force expression using variational principles.
More accurate estimates of the surface normal are obtained when the colour field is

smoothed by convolution with a high order kernel [39,40]. With SPH this smoothing is
naturally achieved by using the standard interpolation expression

ca=%
b

mb

rb

cb
i Wab (16)

Additional improvements in accuracy are obtained by using

na=%
b

mb

rb

(cb−ca)9aWab (17)

since this involves a difference between neighbouring particle colours.
The simplest SPH expression for the divergence of n̂ is
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(9 · n̂)a=%
b

mb

rb

n̂b · 9aWab (18)

however, a more accurate estimation of divergence is obtained using [4]

(9 · n̂)a=%
b

mb

rb

(n̂b− n̂a) · 9aWab (19)

Unfortunately, if Equations (19) and (17) are used to evaluate curvature, large errors will occur
at the fringes of the transition zone. The main difficulty is that the calculation of curvature
requires the normalized normals n̂. Some distance away from the interface, n will be small and
may have an erroneous direction. As a result, any estimate of curvature that uses these
normals will be inaccurate. For example, Figure 1 shows the curvature calculated for a circle
of radius 0.25 in the neighbourhood of a line through its centre. The correct curvature as a
function of distance is represented by the solid line. The SPH particles were placed on a
hexagonal lattice of spacing 0.01, and a quintic spline kernel with smoothing length of 1.5
times the nearest neighbour distance was used. The estimated curvature passes through the
exact result near the interface, but has a wide scatter near the fringes of the smoothed
interface. The actual extremes in the estimate of curvature are approximately −50 and 50. In
a dynamic simulation, these errors rapidly disrupt the interface.

A more accurate curvature estimate is obtained by using appropriate criteria to determine if
a normal is ‘reliable’ before including it in a divergence calculation. For this work, the
following were used:

Figure 1. Curvature for a circle of radius 0.25 centred at x=0.5, y=0.5. Solid circles are the SPH
estimates of curvature using all normals (Equations (17) and (19)). The solid line gives the correct

curvature (k=1/r).
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Na=
!1, if �na �\e

0, otherwise
(20)

and

n̂a=
!na/�na �, if Na=1

0, otherwise
(21)

Typically, e was taken to be 0.01/h in this study, since this scales appropriately with the
resolution length and is proportional to the maximum gradient of c achievable for a given
smoothing length. It is then necessary to correct (19) for the absence of normals in the
neighbourhood of particle a. This can be done by defining an intermediate estimate of
divergence using a sum over reliable neighbouring normals

(9 · n̂)a*=%
b

min(Na, Nb)
mb

rb

(n̂b− n̂a) · 9aWab (22)

This initial estimate can be corrected by a factor Ca,

(9 · n̂)a= (9 · n̂)a*/Ca (23)

where

Ca=%
b

min(Na, Nb)
mb

rb

Wab (24)

reflects the local number density of particles with ‘reliable’ estimations of normals. Similar
approaches have been used previously to improve the accuracy of first derivatives [5,38] and
can be derived within the formalism of element free Galerkin methods [41]. Results using this
approach are shown in Figure 2. The modified SPH estimates of curvature are very close to the
exact result, and no scatter at the fringes of the interface is evident.

The surface tension force can now be included in (14) using

(as)a= −
sb

ra

(9 · n̂)ana (25)

The incorporation of surface tension places an additional restriction upon the sound speed of
the SPH fluid. For a static cylinder, the pressure jump across the interface satisfies

dp=sk (26)

thus, the sound speed squared should be comparable with
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Figure 2. Curvature for a circle of radius 0.25 centred at x=0.5, y=0.5. Solid circles are the SPH
estimates of curvature using only the ‘reliable’ normals (Equations (22) and (23)). The solid line gives the

correct curvature (k=1/r).

c s
2�

sK

r0D
(27)

where K is the typical curvature. To maintain numerical stability with respect to surface
tension forces when using explicit time integration, this work uses a CFL condition [37] based
upon the capillary wave phase velocity, similar to that suggested by Brackbill et al. [31]

Dts50.25
�r̄h3

2ps

n1/2

(28)

In addition, conditions due to the sound waves in the SPH fluid,

Dt50.25
h
cs

(29)

the magnitude of individual particle accelerations, a, (see Monaghan [4]),

Dt50.25 min
b

� h
ab

�1/2

(30)

and viscous diffusion,

Dt50.125
rh2

m
(31)

must be satisfied [7].
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6. A MOMENTUM CONSERVING FORM

The method presented above does not guarantee exact conservation of linear or angular
momenta. There are several approaches that can be employed to derive expressions for
conservative forces. For example, Lafaurie et al. [42] derived a surface tension force expressed
as the gradient of a tensor

k n̂ds=9[(I− n̂× n̂)ds] (32)

A suitable SPH approximation for this may be written as

(as)a=
�1

r

(Sij

(xj

�
a

=%
b

mb

(Sij)a+ (Sij)b

rarb

9a, jWab (33)

where

Sij=ds(dij− n̂i n̂j) (34)

Here, dij denotes the Kronecker delta, 9a, jWab is the jth component of the gradient of Wab with
respect to ra, and repetition of the j index implies summation. To improve accuracy, only
normals satisfying (20) are included. Since the reciprocal particle contributions in (33) are
antisymmetric, linear momentum is conserved. There are several potential disadvantages to
this approach. Since this formulation no longer involves a direct calculation of curvature, it is
more difficult to exploit a ‘correction factor’ such as that introduced in Section 5. In addition,
this method is potentially unstable. It is well known that SPH particles are unstable to
attractive forces when momentum conserving formulations are used [38,43–47]. The effect of
the dsI term in (32) is a tension. The net force between particles, however, will remain repulsive
provided the pressure force dominates

p\s max ds (35)

As the resolution is increased, the maximum of ds will increase and at some point, the method
will become unstable. The simplest solution to this problem is to replace Sij with a modified
tensor

Sij*=Sij−dij max ds (36)

This avoids tension occurring between particles and results in a stable solution for the test
problems. A similar approach has been used to stabilize SPH simulations of magnetohydrody-
namics [38,44]. However, it has also been established that excessive ‘over pressure’ acting
between SPH particles can lead to long wavelength instabilities [38,45,47]. Such problems were
not observed for the test results considered here, however, as resolution is increased the
peak value of ds will increase and this particular instability may become significant. More
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sophisticated methods for stabilizing SPH particles in tension have been developed [5], and
may be less susceptible to this problem.

It is also possible to derive formulations that exactly conserve linear and angular momenta
using a Lagrangian. The approach permits us to take an SPH expression for the surface energy
resulting from surface tension and transform it into an equation of motion. For example,
Monaghan [11] considered the surface energy at a free surface of SPH particles. However,
these formulations involve explicit second derivatives of the kernel, which (for lower order
spline kernels) tend to be inaccurate [48]. It is also more difficult to relate the stability
properties of these formulations to the established stability properties of SPH [38,43–47].

7. REMOVING THE SINGULARITY

One disadvantage of the formulations presented above is that ds introduces a singularity into
the solution for the pressure field as the resolution is increased. Sussman et al. [49] suggested
substituting (6) (taking [c ]=1) into (2) and re-writing as

Fs=sk9c=9(skc)−sc9k (37)

This assumes that k is defined throughout the solution domain. This can be done in several
ways by smoothly interpolating k from the interface into regions where it was not initially
defined. The first term of (37) can now be incorporated into the pressure term of the
momentum equations by introducing new definitions for the pressure and surface tension force

p*=p−skc (38)

Fs*= −sc9k (39)

Thus, the same momentum equation (14) can be used with (39) replacing the surface tension
force and with modified pressure boundary conditions which accommodate the new definition
of pressure. The volumetric force (39) no longer contains a delta function as resolution is
increased, improving the numerical solution for the pressure field. This approach has been
used by Rider et al. [50] to permit the simulation of the nozzle of an ink jet printer.

The other implementations of surface tension weighted particles within the interface more
heavily than particles outside the interface. The new approach weights all particles according
to their colour only. Consequently, erroneous estimates of k may be extrapolated throughout
the computational domain, potentially disrupting the solution. Under the original definition of
the surface tension force, less reliable estimates of curvature on the fringes of the interface
received a lower weighting. To improve the stability of this technique, only the curvatures of
particles satisfying �na �\e2 were used. The same e as before was used to decide which normals
were included in the calculation of curvature. The second, larger e2 was used to decide which
particles had reliable estimates of local curvature. Curvatures satisfying this condition were
then extrapolated throughout the domain.
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It is expected that this method will exhibit better numerical stability properties as the
resolution is increased. However, the evaluation of the gradient of the curvature field requires
an extra pass over all the particles and a corresponding increase in computational effort.

8. TEST CASES

In the following sections, the performances of the methods presented are investigated. For
brevity, the approaches are denoted

� Method I uses a force based directly on the interfacial curvature (25).
� Method II uses the momentum conserving form described in Section 6.
� Method III employs the gradient of the curvature as described in Section 7.

8.1. Stability of an interface

Previous studies using the CSF formulation have reported a numerical instability which
develops at the fluid–fluid interface [40,42]. This instability leads to non-zero velocities at the
interface, termed parasitic currents, causing unrealistic fluxes across the interface between two
fluids. Using SPH these parasitic currents could lead to particle disorder at the fluid–fluid
boundary, having the effect of diffusing the interface.

In order to study the significance of this phenomenon for the methods presented here, a
simple static test case was considered. A periodic domain spanning 0.5 units in the x-direction
and 1 unit in the y-direction, with the upper half filled with fluid of colour 1 and the lower half
with colour 0 was simulated. The fluid densities were 1, the surface tension coefficient was 1,
and no viscous forces were included. The sound speed of the fluid was set to be approximately
20 in the simulation units. At t=0, a random velocity field was imposed with kinetic energy
approximately six orders of magnitude less than the internal energy of the fluid. The ratio of
kinetic energy to the internal energy of the fluid was recorded as a function of time for each
method for several combinations of smoothing lengths.

It is well established that the stability properties of SPH improve when smoother kernels,
more closely resembling a Gaussian are employed [38,45,47]. The simulations presented here
used cubic and quintic spline approximations to a Gaussian kernel [7]. The use of different
levels of smoothing to evaluate the curvature and the surface delta function (here denoted by
h0 and h1 respectively) was also considered. In this way, by using a slightly larger smoothing
length for curvature calculation, more reliable estimates of curvature are obtained in the region
where the surface normals (obtained using h1) are non-zero. Grid-based implementations of the
CSF method have achieved a similar result by using a wide stencil for the curvature estimate
[30,31]. One disadvantage of this approach is that the computational effort for each time step
increases as h0 is increased and the time step size must decrease as h1 is decreased to ensure
stability of the time integration. Consequently, for a given level of resolution, employing two
smoothing lengths can be significantly more computationally intensive.

Figure 3 compares the evolution of kinetic energy using Method I for several choices of
kernel and smoothing length. It is seen that, for the same parameters, the quintic spline is
consistently more stable than the cubic spline. In addition, as the smoothing length is increased
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Figure 3. Evolution of log10 Ek with time for Method I. Curves marked with circles and triangles denote
use of the cubic and quintic splines respectively. Use of h0=h1=1.0, h0=h1=1.5 and h0=1.5, h1=1.0

are denoted by black, mid-grey and dotted curves respectively.

from h=1 to h=1.5 a substantial improvement in stability is observed. The best stability
properties, however, are exhibited when the smoothing length used to weight the surface force
is shorter (h1=1.0) than that used to calculate the curvature (h0=1.5).

Similar results were obtained using Method II (see Figure 4), with the exception that the
cubic spline with h=1.0 is anomalously stable. This is not completely unexpected, as it has
been observed previously that SPH can be very stable for narrow ranges of relatively small
smoothing lengths while more reliable numerical stability is achieved at larger smoothing
lengths and by using smoother kernels [38,45,47]. Once again, the quintic spline is typically
more stable than the cubic for the same parameters. The most stable set of parameters is the
combination of shorter smoothing length for the surface force than that used to evaluate
curvature.

Method III is unstable when used with a smoothing length of 1.5 and e2=e (see Figure 5).
The reason for this appears to be that inaccurate curvature estimates at the fringes of the
interface are extrapolated throughout the computational domain. By increasing e2, only more
reliable values of k, closer to the centre of the smoothed interface, are included. Consequently,
the stability of the method improves.

8.2. Equilibrium rod

Given a circle of known radius, a numerical method should reproduce the radius of curvature
accurately. Once the simulation is left to run to equilibrium, the pressure within the circle
should be elevated according to Equation (26).
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Figure 4. Evolution of log10 Ek with time for Method II. Curves marked with circles and triangles denote
use of the cubic and quintic splines respectively. Use of h0=h1=1.0, h0=h1=1.5 and h0=1.5, h1=1.0

are denoted by black, mid-grey and dotted curves respectively.

SPH particles were set up on an initially hexagonal lattice filling a square periodic domain
of width 1 unit. Particles within a circle of radius 0.25 units were given a colour of 1. All
simulations used s=1, fluid density of 1, a sound speed of approximately 20, and a smoothing
length of 1.5 times the initial nearest neighbour distance with a quintic spline kernel. For
Method III, e2 was taken to be 0.25/h. Several initial particle spacings were considered,

Figure 5. Evolution of log10 Ek with time for Method III. Curves marked with circles and triangles
denote use of the cubic and quintic splines respectively. Use of e2=0.01/h, 0.1/h and 0.25/h are denoted

by black, mid-grey and dotted curves respectively.
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corresponding to approximately 17, 25 and 50 particles spanning the circle. A constant small
amount of viscosity was included and the simulations were run until the steady state was
reached. The percentage error from the correct pressure jump (dp=4) using each method
appears in Table I. All methods achieved the correct answer to within 1 per cent when the
circle was spanned by 50 particles. Methods II and III give slightly more accurate results in this
test case.

8.3. Oscillating rod

A dynamic test case is the non-linear oscillation a circular droplet with an initial velocity
perturbation. It is possible to consider the oscillation of initially elliptical drops, however, it
can be difficult to impose the same initial state for the different methods. Since SPH uses a
quasi-incompressible equation of state, it is difficult to ensure that there is no extra energy
associated which the initial placement of particles. For this test case, initially circular drops
were evolved to a stable steady state (see Section 8.2). The simulation was then continued with
a prescribed initial velocity

6x=V0

x
r0

�
1−

y2

r0r
�

exp(−r/r0) (40)

6y= −V0

y
r0

�
1−

x2

r0r
�

exp(−r/r0) (41)

This velocity field is divergence free and leads to the initial cylinder of fluid being stretched out
along the x-axis (for positive V0).

Simulations were performed within the domain 0BxB1 and 0ByB1 using fluids of
density 1 and dynamic viscosity m=0.05. No-slip boundary conditions were applied on the
domain boundaries. Results were obtained using each SPH method with a smoothing length of
1.5 times the initial nearest neighbour distance with a quintic spline kernel. For Method III,
62 was taken to be 0.25/h. A grid-based code using the method of Youngs [26] to track the
interface, flux corrected transport (FCT) to advect momenta, and a preconditioned conjugate
gradient method to solve a projection equation was also applied to the problem for compari-
son. Similar grid-based methods have been used previously to model multiphase flows
[30,40,50].

Table I. The relative error in pressure jump across the static cylinder for each
method at several resolutionsa.

II (%)I (%)Nd III (%)

50.0 0.8 0.04 0.1
25.0 2.2 −0.25 0.6
16.6 5.2 0.48 1.9

a Nd is the number of particles spanning the cylinder.
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Simulations were run using r0=0.05, V0=10, sound speed of approximately 20, and s=1
for a cylinder of initial radius 0.1875. These parameters result in an initial amplitude of about
0.03 and an average velocity at the interface of about 0.8. This corresponds to a Weber number
(We) of 0.24 using

We=
rV2L

s
(42)

where L=0.375 and V are the typical length and velocity scales. The Reynolds number (Re)
for this problem is approximately 6 according to

Re=
rVL

m
(43)

Simulations were conducted at several resolutions using all methods. The grid-based method
was found to converge with 30 cells spanning the initial cylinder. Average absolute error
between the SPH methods and the converged grid-based solution as a percentage of the wave
amplitude are shown in Table II. The positions of particles of colour 1 obtained using Method
I at the highest resolution are shown in Figure 6. The agreement between the methods is
excellent (see Figure 7).

Simulations were also run using the same parameters with s=2 and a sound speed of
approximately 30. This corresponds to We=0.12 and Re=6. Average absolute error between
the SPH methods and the converged grid-based solution as a percentage of the wave amplitude
are shown in Table III. Once again, the agreement between the SPH methods and the
grid-based solution is excellent (Figure 8).

9. DISCUSSION AND SUMMARY

Smoothed particle hydrodynamics (SPH) has been extended to simulate surface tension effects
by using specialized expressions for calculating the curvature of the interface between two
species of particles. The most straightforward approach (Section 5) involves calculating a
corrected SPH estimate of curvature and applying it directly to obtain a surface tension force
(25). While this method provides a clear framework for improving the solution by using
correction factors, it does not conserve momentum exactly and the volumetric force at the

Table II. The relative error of each method at several resolutions for simula-
tions with We=0.24 and Re=6a.

II (%)Nd I (%) III (%)

1.31.6 2.137.5
18.75 2.6 4.8 9.2

a Nd is the number of particles spanning the initial cylinder.
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Figure 6. Positions of the SPH particles of colour 1 at t=0.00, 0.08, 0.16 and 0.26, using Method I with
We=0.24 and Re=6 for the highest resolution considered.

interface becomes singular as resolution is increased. The second method presented (Section 6)
employs the gradient of a stress tensor (33) to calculate surface tension, and conserves linear
momentum exactly. Although not observed in this study, this approach may become unstable
at high resolution. The third approach (Section 7) removes the singularity associated with the
surface delta function by introducing a modified definition of pressure (38) and surface tension
force (39). Despite not guaranteeing conservation of momentum, this method is expected to be
most stable as resolution is increased. In addition, the removal of the singularity may allow the
quasi-incompressible condition (27) to be relaxed, improving the accuracy of the method for
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Figure 7. Semi-major axis, a, as a function of time for simulations using PLIC (solid line), Method I,
Method II, and Method III (black triangle, grey circle, and grey triangles respectively) with We=0.24

and Re=6 for the highest resolution considered.

high surface tension coefficients. However, this technique requires extra computational expense
to evaluate the gradient of the curvature. Furthermore, the third method requires the
introduction of an extra parameter, e2:0.25/h, to prevent instabilities resulting from errors in
the curvature estimation. The appropriate method for a given problem will depend upon the
relative importance of exact conservation of momentum, numerical stability, and accuracy.

A brief investigation of the stability properties of the method indicates the use of a
higher-order kernel typically gives more stable results. By using a larger resolution length to
calculate curvature than that used to evaluate the volumetric force, further improvements in
stability were observed. However, the use of two smoothing lengths increases the computa-
tional effort. For static drop tests, all methods achieved 1 per cent accuracy with more than 50
particles spanning the droplet. Simulations of non-linear oscillations were found to be in close
agreement with results obtained using a grid-based technique. All methods achieved approxi-
mately 2 per cent or better agreement with the grid-based method provided approximately 40
particles spanned the initial droplet.

Table III. The relative error of each method at several resolutions for simula-
tions with We=0.12 and Re=6a.

Nd III (%)I (%) II (%)

37.5 2.0 1.8 2.1
2.9 9.95.518.75

a Nd is the number of particles spanning the initial cylinder.
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Figure 8. Semi-major axis, a, as a function of time for simulations using PLIC (solid line), Method I,
Method II, and Method III (black triangle, grey circle, and grey triangles respectively) with We=0.12

and Re=6 for the highest resolution considered.

The extension of the method to three-dimensional problems is, in theory, straightforward.
The method could also be extended to simulations involving high-density variations. The
method is currently being applied to the simulation of multiphase flow through porous media,
however, the simulation of flows involving intermediate wetting fluids will require the
implementation of appropriate boundary conditions at fluid–solid interfaces.
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